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Abstract

Fortran 90 does not support automatic inheritance and run-time polymorphism as
language mechanisms. This paper discusses techniques for software emulation of
inheritance and polymorphism in Fortran 90, which simplifies the implementation
of an object-oriented programming style in Fortran 90.

1. Introduction

In recent years, a number of papers have appeared discussing Fortran 90 and Object-Or
Programming (OOP) [1-6]. Fortran 90 clearly has some language features which are usefu
OOP (derived types, modules, generic interfaces), but clearly lacks some others (inherita
run-time polymorphism). Is OOP possible or practical in such a situation? Cary et. al.
believe that Fortran 90 allows it “to some degree,” but that an object hierarchy cannot be c
structed and polymorphic types are not possible. Gray and Roberts [6] argue that inherit
can be “faked” (sic), but the effort required too much duplication of code to be practical.
this paper we will show how to emulate inheritance and polymorphic types by software c
structs without duplication of code. This allows one to implement all the important concept
OOP, but with more effort than would be required in an object-oriented language. To keep
exposition of this paper clear and focused, we will expand on the stopwatch example use
Gray and Roberts.

What is inheritance? Gray and Roberts quote Rumbaugh [7] in defining inheritance to
“sharing of structure and behavior among classes in a hierarchical relationship.” They
define polymorphism to be “differentiation of behavior of the same operation on differe
classes.” In many object-oriented languages, inheritance and run-time polymorphism us
same language mechanism so these concepts are glued together. Since Fortran 90 do
have such a unifying mechanism, it is helpful to keep these concepts separate while develo
emulation techniques. Another useful distinction is the difference between static (ad hoc)
run-time polymorphism. Static polymorphism means that the actual type being used at
point in the program is known at compile time, while run-time polymorphism means that a s
gle type can refer to one of several possible actual types, and only at run-time can the co
type be determined.
Reprinted from Computer Physics Communications 115 (1998) 9-17.



on-
here
atch

de in
Our
the

ses)
hich
and
tch,
func-
e.
will
time

teger
. A
ss to
to ini-

a
lass.
. In
ich
as fol-
When Gray and Roberts “fake” inheritance with their stopwatch example, they appear to c
flate the concepts of inheritance and polymorphism together. This results in a situation w
“developers of new classes derived from the stopwatch class must modify the base stopw
class to accommodate the new type,” and where developers “must duplicate identical co
each of the child classes in order to allow future classes to override the default behavior.”
techniques for implementing inheritance allow us to avoid these difficulties and replace
pejorative “fake” with the more neutral “emulate.”

2. Implementing an inheritance hierarchy

The real value in using inheritance is to avoid duplicating code when creating types (clas
which are similar to one another. Gray and Roberts create a base type called stopwatch, w
is composed of a number of timers and has two main procedures: split (to toggle a timer on
off) and report (to display the results). They then create a class called parallel_stopwa
which is derived from stopwatch and shares its procedures and interfaces, but adds new
tionality for parallel computing. Unfortunately, they do not show how this derivation is don
Instead they focus on how to implement run-time polymorphism for these two classes. We
begin by showing how to create the derived class and later show how to implement run-
polymorphism.

We can define a parallel stopwatch class with the following derived type:

type parallel_stopwatch
private
type (stopwatch) :: sw ! base class component
integer :: idproc ! processor id

end type parallel_stopwatch

which contains exactly one instance of the base class type stopwatch, and an additional in
type which contains the processor id defined on a distributed memory parallel computer
constructor for the derived class is implemented by calling the constructor of the base cla
construct the base class component, and the procedure gidproc to obtain the processor id
tialize the integer component:

subroutine stopwatch_construct(self,n)
type (parallel_stopwatch), intent(out) :: self
integer, intent(in), optional :: n
call construct(self%sw,n) ! call base class constructor
call gidproc(self%idproc) ! assign processor id

end subroutine stopwatch_construct

This is functionally equivalent to the memberwise initialization list used in C++ to initialize
derived class object. A similar procedure is used to create the destructor for the derived c
We want the method split in the derived class to work the same way as in the base class
Fortran 90 this is implemented by writing a procedure with exactly one executable line wh
merely calls the base class procedure on the base class component of the derived type,
lows:
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subroutine stopwatch_split(self,name)
type (parallel_stopwatch), intent(inout) :: self
character(len=*), intent(in) :: name
call split(self%sw,name) ! delegate to base class

end subroutine stopwatch_split

In C++, such a procedure would be automatically available and would not have to be explic
written.

Static polymorphism is implemented in Fortran 90 by using an interface block in the deriv
class, as follows:

interface split
module procedure stopwatch_split

end interface

so that the name split can be used with either type correctly.

We want the method report, on the other hand, to be implemented differently in the deri
class to accommodate the new features of parallel processing (e.g., it will report the maxim
time returned by the stopwatches on each node.) This method would have to be rewritte
both C++ and Fortran 90, and the two languages are equivalent here.

Thus we can create either a normal stopwatch or a parallel stopwatch and run one or the
as follows:

program main
! get stopwatch type definition and methods

use parallel_stopwatch_class
#ifdef MPP

type (parallel_stopwatch) sw  ! declare a parallel stopwatch
#else

type (stopwatch) :: sw ! declare a stopwatch
#endif

call construct(sw) ! construct stopwatch
call split(sw,’bar’) ! turn “bar” split on
call bar() ! execute bar subroutine
call split(sw,’bar’) ! turn “bar” split off
call report(sw,6) ! report total and split times
call destruct(sw) ! destroy stopwatch

end program main

Note that the parallel_stopwatch class did not have to “modify the base stopwatch clas
accommodate the new type,” nor did we have to “duplicate identical code” in the child clas
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So far, our emulation of inheritance consists of two techniques. First, inheritance of data m
bers is implemented by including exactly one instance of the base class data member
derived class. Second, inheritance of methods is implemented by delegation (or subcon
ing) to the base class the responsibility of carrying out the operation on the base class co
nent of the derived class object. These techniques for emulating inheritance have appe
earlier [3-5].

Inheritance is sometimes referred to as an “is-a” relation (a parallel stopwatch is a kind of s
watch). Another relation which occurs in object-oriented programming is the “has-a” relat
(a stopwatch has timers). Our emulation is based on the observation that a parallel stopw
can function as a stopwatch precisely because it contains a stopwatch inside itself. This id
not entirely new. Meyer [8] also points out that “when the “is” view is legitimate, one ca
always take the “has” view instead.”

What we have done is create an inheritance hierarchy but without run-time polymorph
(that is, without the use of virtual functions in C++). In many cases, this is sufficient. F
example, by use of a preprocessor one can chose either a stopwatch or a parallel stopwa
compile time. This is always more efficient at execution time than run-time polymorphis
even in C++. Another way to avoid requiring run-time polymorphism is to ensure that para
stopwatches run correctly on serial computers. In our case this was implemented by requ
that the procedure which calculates a global maximum produces the correct result even if
a single node is being used. Then it is always safe to use parallel stopwatches even on non
allel computers.

3. Implementation of run-time polymorphism

Nevertheless, sometimes one does desire the functionality of run-time polymorphism, and
is often considered a part of the meaning of inheritance. In the case of our stopwatches
parallel stopwatch reports one global result, whereas the normal stopwatches report a resu
each node separately. In normal operation, parallel stopwatches are used, but if unusual b
ior is occurring, it may be desirable to switch to the normal stopwatch (possibly interactive
on the parallel computer to obtain information about the variation of timings across process
We implement run-time polymorphism by creating a polymorphic type called poly_stopwat
which contains a pointer for each possible type in the inheritance hierarchy:

type poly_stopwatch
private
type (stopwatch), pointer :: s
type (parallel_stopwatch), pointer :: p

end type poly_stopwatch

If stopwatches have already been created, then one can write a conversion function to a
one of the pointers in the polymorphic type to the stopwatch one desires to use (nullifying
others), as follows:
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function convert_stopwatch(s) result(sw)
! convert stopwatch to poly_stopwatch

type (poly_stopwatch) :: sw
type (stopwatch), target, intent(in) :: s
sw%s => s
nullify(sw%p)

end function convert_stopwatch

If we further write a similar conversion function for parallel stopwatches and create the in
face name poly to refer to them:

interface poly
module procedure convert_stopwatch
module procedure convert_parallel_stopwatch

end interface

then we can use the poly_stopwatch type to refer to either type:

type (stopwatch) :: s ! declare a stopwatch
type (parallel_stopwatch) :: p ! declare a parallel stopwatch
type (poly_stopwatch) :: sw ! declare polymorphic stopwatch
!
call construct(s) ! construct a stopwatch
call construct(p) ! construct a parallel stopwatch
!
sw = poly(s) ! sw is a normal stopwatch now
....
sw = poly(p) ! sw is a parallel stopwatch now
....

In addition to creating a polymorphic type, a dispatch mechanism must be constructed to
cute the correct procedure. This procedure merely checks which pointer has been assoc
and executes the corresponding procedure.

subroutine stopwatch_report(self,u)
type (poly_stopwatch), intent(inout) :: self
integer, intent(in) :: u
if (associated(self%s)) then

call report(self%s,u)
elseif (associated(self%p)) then

call report(self%p,u)
endif
end subroutine stopwatch_report
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which is similar to the one shown by Gray and Roberts. When this function is added to
interface report, it corresponds to creating a virtual function in C++. The following examp
illustrates how to use run-time polymorphism:

sw = poly(s) ! use normal stopwatch
call split(sw,’bar’) ! turn “bar” split on
call bar() ! execute bar subroutine
call split(sw,’bar’) ! turn “bar” split off
call report(sw,6) ! report total and split times
!
sw = poly(p) ! use parallel stopwatch
call split(sw,’foo’) ! turn “foo” split on
call foo() ! execute foo subroutine
call split(sw,’foo’) ! turn “foo” split off
call report(sw,6) ! report total and split times

This use of the poly function with the poly_stopwatch type corresponds to the assignmen
derived class objects to base class pointers in C++.

This polymorphic class functions like an abstract base class or interface class in C++. H
ever, it is constructed after all the classes in the inheritance hierarchy are known, and it is
only place where such knowledge is concentrated. Such a situation corresponds to a poly
phic instance set which can occur in object-oriented programming as described by Meyer
The polymorphic class knows only about the types and interfaces in the hierarchy and not
whatsoever about their implementation. None of the classes in the hierarchy that we have
ated with static polymorphism have to be modified to implement run-time polymorphis
Therefore it should be possible to write a software tool to automatically create such a polym
phic class.  This would be a useful project for some enterprising computer science studen

One interesting feature of this approach to adding run-time polymorphism in Fortran 90 is
the polymorphic class can consist of any types whatsoever, not necessarily those relate
inheritance as in C++. Although this is not exactly the same as templates in C++, it serv
similar purpose: the ability to write one function which can be used with different actual typ
This answers the concern of Cary et. al. that “there is no way to refer to a group of ... obj
collectively and have [functions] return what is appropriate for each object.”

If a new type of stopwatch is added to the inheritance hierarchy, derived from one of the o
stopwatches, one first implements an inheritance relationship with static polymorphism, w
does not require changing any of the previous classes, as we have shown. If one further d
to add run time-polymorphism to this third class, an additional pointer must be added to
polymorphic type, an additional line or two must be added to the conversion functions
methods. Finally, a new conversion function must be created. In this example, this co
sponds to adding about a dozen lines of new code.

As an alternative to (or in addition to) creating conversion functions, which requires one to fi
create a specific stopwatch, then assign it to the polymorphic type, one can create a const
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which internally creates one of the stopwatches and associates the corresponding pointer
polymorphic type, as follows:

integer, save, private :: platform = PARALLEL
!
subroutine stopwatch_construct(self,n,timer_type)
type (poly_stopwatch), intent(out) :: self
integer, intent(in), optional :: n, timer_type
if (present(timer_type)) platform = timer_type
if (platform==PARALLEL) then

allocate(self%p)
call construct(self%p,n)
nullify(self%s)

else
allocate(self%s)
call construct(self%s,n)
nullify(self%p)

endif
end subroutine stopwatch_construct

This is similar to the constructor shown by Gray and Roberts, and the following example ill
trates its use:

program main
use poly_stopwatch_class
type (poly_stopwatch) sw   ! declare a polymorphic type
!
call construct(sw) ! construct stopwatch
call split(sw,’bar’) ! turn “bar” split on
call bar() ! execute bar subroutine
call split(sw,’bar’) ! turn “bar” split off
call report(sw,6) ! report total and split times
call destruct(sw) ! destroy stopwatch
end program main

4.  Discussion

Except for the discussion of inheritance, Gray and Roberts have an excellent discussion of
to model object-oriented concepts in Fortran 90. There are only a small number of o
improvements which we can suggest to their exposition. One minor point is that the imp
none statement does not have to be repeated in each subroutine. It can be declared just o
each module and will automatically apply to each procedure contained in that mod
Another minor point is that it is not necessary to make a complete list of the public and priv
entities in a module separately. One can make the default public or private and then list
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the exceptions. Another improvement which one can take advantage of is that pointers in
tran 90 are more “intelligent” than pointers in C++, because they know how much memory
been allocated to them. Therefore class data members such as max_splits in the stop
class described by Gray and Roberts are not needed, since one can always obtain the siz
the Fortran 90 size intrinsic, for example:

type (stopwatch) :: sw
allocate(sw%name(20))
max_splits = size(sw%name)

A further useful feature in Fortran 90 is the idea of an optional argument. Gray and Rob
implement two constructors for the base stopwatch class, stopwatch_construct
stopwatch_construct_1. The only difference between them is that in the former case the n
ber of timers defaults to 20, and in the latter case it is explicitly given as an argument. T
constructors are not required if one uses optional arguments, as follows:

subroutine stopwatch_construct(self,n)
type (stopwatch), intent(out) :: self
integer, intent(in), optional :: n
integer i, max_splits
! make n names, splits
if (present(n)) then

max_splits = n
else

max_splits = 20
endif
....

These optional arguments are more powerful than default arguments in C++, because the
be referenced by keyword. For example, the constructor for the poly_stopwatch type pr
ously discussed above

subroutine stopwatch_construct(self,n,timer_type)
type (poly_stopwatch), intent(out) :: self
integer, intent(in), optional :: n, timer_type
if (present(timer_type)) platform = timer_type
....

can be called with the second optional argument but not the first as follows:

type (poly_stopwatch) sw ! declare a polymorphic type
call construct(sw,timer_type=0) ! construct SERIAL stopwatch

Gray and Roberts use the term “object-based programming” because their emulation of in
itance “required far too much work for far too little benefit” to use. We feel that our techniqu
make object-oriented programming more practical in Fortran 90.
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Indeed, we have translated a great many object-oriented examples from C++ to Fortran 90
have not yet found any object-oriented concept as defined by Gray and Roberts which c
not be implemented. Many of these examples are available on our web site [9], includin
complete listing of our implementation of stopwatches. For an extended discussion of the
of polymorphic types in Fortran 90, wee ref. [3].

Cary et. al. give a good explanation of inheritance by delegation, but they are clearly less p
cient in Fortran 90 than in C++, and as a result their paper has a number of errors, misun
standings, and inefficiencies. Many of the errors would be caught by a compiler, so we will
dwell on them here. However, there are some points that are more subtle that we feel shou
explicitly addressed. In their discussion, they have a procedure to return the kinetic energy
particle, similar to:

real function KineticEnergy(p)
type (particle), intent(in) :: p
real :: ke = 0.0
ke = ke + (p%velocity)**2
KineticEnergy = p%mass*ke
end function KineticEnergy

The problem here is the initialization of the variable ke. In Fortran 90, when a variable
declared with an initial value in a procedure, it automatically has the save attribute, so tha
second entry, the old value of ke would have been used, instead of being reinitialized to z
This is a common trap when translating C++ code to Fortran 90.

A misunderstanding they have involves the parameter attribute, as in the following declara

real, parameter, private :: elemCharge = 1.6e-19
save

The authors state that “The SAVE qualifier indicates that only one copy of the parameter
used.” Parameters are not variables, they are symbolic constants. There is no danger of h
multiple constants, but the save statement is harmless. Other minor improvements one
make to their exposition is that return statements are not needed at the end of a procedure
are automatic. Also, they do not take advantage of array syntax, but continue to write loop
the C++ style.

There are three main disadvantages to using object-oriented techniques in Fortran 90 com
to doing so in a true object-oriented language. The first is that more code must be writ
especially in implementing the polymorphic class. This situation could be improved by
development of an appropriate software tool. The second is that emulation of inherita
requires an extra layer (or more) of procedure calls. This can lead to performance degrad
if the amount of work being done in the procedure is small. Finally, procedures which
polymorphic types must be recompiled if a new derived class is added to the inheritance hi
chy.  This can be a nuisance for very large projects where compilation time is long.

We have been programming in Fortran 90 and C++ for several years now [10-11], and h
found that there are indeed many useful ideas in object-oriented analysis and design. Th
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concepts which we have found most useful are the notion of creating simple, stable interf
for procedures by data hiding and encapsulation with types and the idea of avoiding replica
of code.

Other ideas seem less compelling. Gray and Roberts argue that “inheritance is ... the
important concept in science. Knowing that an emu is a kind of bird tells me many thin
about its behavior.” But inheritance can also be misused. For example, by inheritance
might conclude that emus fly.  (Oops, they don’t!)

The inheritance relationship as traditionally defined in object-oriented languages requires
exactly one copy of the base class data members are contained inside a derived class. Th
tionship is like that of the Russian matrioska dolls, where one fits snugly inside another.
have not found very many examples where such a relationship occurs in our scientific
gramming, although we recognize that such examples exist in other domains. Instead
notion of composition, where one or more objects are contained inside another (such as ti
in stopwatches) occurs more often. The notion of delegation which we used to model inh
ance can also be used here to avoid replicating code, just as in C++. Even Rumbaugh [7]
that “Many applications do not require inheritance. Many other applications have only a
classes requiring inheritance.”

The few times when run-time polymorphism seemed useful often occurred for families of d
types which were not related by inheritance, while object-oriented languages supported p
morphism only when the data was related by inheritance. Object-oriented programming se
to be based on the idea that types are more important than procedures. We are still not
vinced this is true, nor are we convinced that the opposite is true. But we do have some
ging doubts whether nouns are more central than verbs in the scheme of things.

Fortran 90 is a language designed for scientific computing and we believe it does this w
C++ is designed as a more general purpose language which deliberately avoids specializ
to specific domains. Each language has both advantages and disadvantages. Fortran
specialized features useful for scientific calculations, such as powerful array classes,
requires one to write polymorphic classes. C++ has a powerful inheritance mechanism
requires one to write array classes. We have found that it takes significantly longer to de
code written in C++ than in Fortran 90. One reason is that Fortran 90 is more restricted in
features and more strict in its type checking (no automatic conversions across argument
example). Another reason has to do with style. Meyer describes a “picture of the softw
developer as fireworks expert or arsonist. He prepares a giant conflagration ... then lights
match and watches the blaze.” Such code can be very difficult to debug when some unexp
problem arises, especially in C++ when polymorphism and automatic type conversi
obscure the flow of logic. It makes one long for the simple days of spaghetti code, whe
least there were statement labels to help one find ones way through all that pasta!
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